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Shock-like features of phase-change flows in porous media are explained, based on the 
generalized Darcy model. The flow field consists of two-phase zones of parabolic/ 
hyperbolic type as well as adjacent or imbedded single-phase zones of either parabolic 
(superheated, compressible vapour) or elliptic (subcooled, incompressible liquid) 
type. Within the two-phase zones or at the two-phaselsingle-phase interfaces, there 
may be steep gradients in saturation and temperature approaching shock-like behav- 
iour when the dissipative effects of capillarity and heat-conduction are negligible. 
Illustrative of these shocked, multizone flow-structures are the transient condensing 
flows in porous media, for which a self-similar, shock-preserving (Rankine-Hugoniot) 
analysis is presented. 

1. Introduction 
Geological applications motivate the study of transient phase-change flow in 

porous media. Examples include: geothermal systems (Brownell, Garg & Pritchett 
1977) ,  steam stimulation of oil fields (Weinstein, Wheeler & Woods 1977), and con- 
tainment of underground nuclear tests (Morrison 1973) as well as the in situ combus- 
tion processes such as oil-shale retorting and coal gasification. 

A mathematical statement of the conservation principles leads to partial differential 
equations having hyperbolic, parabolic and elliptic character within different regions 
of the flow. In  phase-change regions, where the fluid-matrix energy transfer pre- 
dominates, the transport equations are of a mixed parabolic/hyperbolic type. I n  
adjacent or imbedded single-phase regions, the velocity field becomes nearly un- 
coupled from the temperature field and the pressure field is either parabolic or elliptic 
for the respective cases of compressible vapour and incompressible liquid. Transitions 
between zones are accompanied by steep gradients in saturation and temperature, 
approaching shock-like behaviour as capillary pressure and thermal conduction 
become negligible. 

Saturation shock is a characteristic feature of multiphase flows in which the pres- 
sure gradient is the primary driving force rather than the gradient in capillary pres- 
sure, as expected in the applications noted above (although not in unsaturated 
hydrology, the infiltration problem, or some drying processes). The best known 
example of saturation shock is the Buckley-Leverett case of immiscible fluidlfluid 
displacement (Bear 1970). Comparable behaviour occurs in isothermal phase-change 
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systems, as reviewed by Nikolaevskii & Somov (1978), but here the isothermal restric- 
tion precludes the fluid/matrix energy transfer which is paramount in the applications 
noted above. When the energy transfer is included as in oil displacement by hot water 
(Fayers 1962), thermal shocks are found to accompany the saturation shocks, pro- 
vided that convective heat transfer dominates over conduction. These fundamental 
examples suggest that a composite of shock-like behaviour will likely be encountered 
in the coupled problem of non-isothermal, phase-change flow. Although it is true that 
capillarity and heat conduction will always smear the shock fronts in direct analogy 
with viscous smearing of gasdynamic shocks (Scheidegger 1974), these dissipative 
effects should be moderate in the noted applications, as is already apparent in some 
previous numerical simulations. 

Shock-like phenomena are observed in numerical simulations of non-isothermal, 
phase-change flows in porous media (e.g. Weinstein et al. 1977; Morrison 1973), but 
there have been no analyses which explain the mathematical and physical character 
of these phase-change shocks which occur as a consequence of fluid/matrix energy 
transfer. Such an analysis is particularly needed because the direct numerical integra- 
tion of the primitive equations is a very difficult task (subject to the numerical in- 
stabilities and dispersion which result from nonlinearity, type-change, and sharp 
fronts (Settari & Aziz 1975)). There has been no opportunity to assess the accuracy 
by comparison with a reliable but non-trivial solution, and the physical structure 
of the flow has been obscured by numerical smearing. 

In the present study of phase-change shocks, consideration is given to self-similar 
flows. The ordinary differential equations are solved by a shock-preserving method, 
using Rankine-Hugoniot (jump balance) conditions in crossing the shock fronts. 
A representative example problem is that of transient condensing flow of a pure sub- 
stance within a porous matrix. Depending on the initial and boundary conditions, 
several flow structures are found to occur as described in the individual sections of 
the paper: 

(a )  two-phase flow divided by a saturation shock (9  4) ; 
( b )  two-phase flow divided by an imbedded slug of subcooled liquid, with shocks 

(c) superheated inflow shocking into a two-phase zone like either (a )  or ( b )  above 

( d )  two-phase inflow shocking into a superheated vapour zone, followed by a two- 
phase zone like either (a )  or ( b )  above ($7); 

( e )  entry flow like either (c) or ( d ) ,  shocking into a central two-phase zone, followed 
by a fully-wet subcooled far-field flow ( 0  5 ) .  
Thus, the central structure is generally two-phase, divided by either a shock or an 
imbedded slug of liquid. The inner and outer zones respectively depend upon the 
boundary (inflow) data and the initial (far-field) data. 

The primary purpose is to  communicate the structure of the flow, based on a widely- 
used mathematical description of the physics. To accent the shock-like structure, 
the dispersive effects of capillarity and heat conduction are suppressed. The 
shock-preserving, self-similar method of solution is well suited because i t  affords the 
opportunity for rigorous analysis as well as reliable numerical computation based 
on well-established algorithms for ordinary differential equations. Qualitative 

on both sides of the slug ($ 5 ) ;  

(0 61, 
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observations and structural aspects are representative of a broad class of flows, not 
just the considered self-similar examples. 

2. Transport equations 

by conservation of mass, energy and momentum (Cheng 1978; Whitaker 1977): 
The transient, two-phase flow of a pure substance in a porous medium is governed 

[ E] E a a 
ax ax +--[p,h,u,+p,h,u,]-- (k)- -- = 0; ( I b )  

I , a,, = 1-S;  
KBP u = -a -- 
vPv ax 

where the subscripts I, v, and m refer to liquid, vapour and solid matrix; K and e are 
permeability and porosity; and 8 is the volume fraction of the pore space containing 
liquid. All other variables have the usual meaning. In  the generalized Darcyequations, 
which relate velocity to pressure gradient a t  low Reynolds number, the relative 
permeability functions al and a, are taken in a simple form which facilitates the 
analysis while still representing the proper qualitative behaviour (Scheidegger 1974; 
Wooding & Morel-Seytoux 1976). Although experimentally-determined 01, and a, are 
considerably more complex, particularly near the single-phase extremes a t  S = 0 and 
S = 1,  the basic qualitative behaviour of the flow should be essentially the same for 
any smooth monotonic functions (as verified by obtaining some comparative solutions 
in which both a, and a, were presumed linear in 8). 

Body forces and capillary pressure are neglected, thermal equilibrium between 
fluid and solid is presumed, and under the supposition of a high Peclet number, the 
conduction terms need only be included for the discussion of shock structure. Viscosi- 
ties are assumed constant, the liquid is incompressible, the gas is ideal (p = P/RT) ,  
and the enthalpies h, = e, + PIP, depend linearly on T with slope Ci for i = 1, v, m. 
Consistent with the low-Reynolds-number Darcy approximation, the kinetic energy 
and u . VP work terms are neglected. 

I n  a region of two-phase flow, the pressure and temperature are related by the 
Clausius-Clauevron eauation 

in which h,, = h, - h, > 0 and v,, = p;l- p;l > 0. I n  a single-phase region, i t  is instead 
required that 

S =: 1, T < Tsat(P) ,  
= 0, T > Tsat(P),  

for the cases of subcooled liquid and superheated vapour, respectively. 
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The initial and boundary conditions to be imposed are 

S ( X ,  0) = X,, P(x,  0) = P,, T ( x ,  0) = T,; 

X ( O , t )  = S,, P(O,t) ==Po, T(0,t) = To. (3) 

To induce a forward flow (aP/ax < 0) and vapour condensation, the boundary pres- 
sure and temperature are abruptly increased to P, > P,, T ,  > T,. If the driving state 
is saturated, T o  = TSBt(P,), and So must be specified. If superheated, To and Po are 
independent, but S, must vanish. In either case, there are two independent boundary 
conditions at  x: = 0; and similarly, there are two independent initial conditions. 

The system reduces to a set of ordinary differential equations under the similarity 
transformation (Morrison 1973; Nikolaevskii & Somov 1978) 

Normalizing P, T ,  p, h,, Ci and k by Po, To,  p,,, hlvo, hl,,/T0 and k,, respectively, the 
transformed equations are 

&9(p,S + (1 - 8) pv)' + ((pva, + RplxJ P')' = 0, ( 4 a )  

T'(F,) - h,,(&9pl# + Rpl(a,P')') - #rP'+ Pe-l (kT')' = 0,  pv = P / T ,  ( 4 b ,  c) 

in which the derivatives, denoted ( )', are taken with respect to the similarity variable 
8, and the parameters 

R = Pv/Pl, = J@O/hlVO, Pe-l = ko TOP, EIPOhlv0KPO 

are all small numbers.t The convective energy flux involves the group 

F ,  = Cl2i;+CvF~+p,C,(fr8)(1-6)/~ 

in which we introduce the notation 

Fl = pl(+8S+RalP'), F, = pvav(+8+3") 

for the mass flux of liquid and vapour relative to the moving self-similar co-ordinate 
system. The transformed boundary conditions are 

S(0) = So, P(0) = 1, Z'(0) = 1 ;  

S(CO) = S,, P(co) = P,, T(co) = T,, ( 5 )  

with P, < 1 and T ,  c 1. 
Within a two-phase zone, the equations are conveniently written 

A(:'") = b, ( 6 a )  

A = h,, 

b = (  T'F, 
- h1,p;c~,(&8+ P') - T'F, 

det A = h~,plp,(a,(~O+ 3RXaP')+Ral(P'+48)). ( 7 )  
t From now on, both r and Pe-I will be neglected, except for the discussion of shock structure 

in §6. 
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I n  single-phase regions, the energy equation ( 4 b )  reduces to 

471 

T'(Fh) = 0 (8) 

(in which Fh is somewhat degenerate since either Fw or Fl vanishes in one-phase 
regions), and the continuity equa,tion (4n) reduces to either 

or 

for the liquid and vapour cases, respectively. 
Although the system is third order, there are four independent boundary conditions 

suggesting that added flexibility is needed. It is noted that for R, > 0, det A < 0 at 
the origin, but that det A --f + co as 8 --f co. Either the flow contains a singularity a t  
which det A = 0 or a shock at  which det A changes sign. The first alternative affords 
the needed flexibility only if b becomes orthogonal to all solutions of ATy = 0 when- 
ever det A = 0 - this being a sufficient condition for the existence of a singular suh- 
interval of variable breadth. Since this compatibility condition is not automatically 
satisfied, a shock must be present. 

3. Shock conditions 
Mass, energy and momentum must be conserved in crossing a shock. From this fact 

(or by integrating (4) across a shock), we obtain the following shock conditions 
(Slattery 1972): 

[FzI+ [ F v I  = 0, ( 1 0 4  

( l o b )  

[PI = 0, (1Oc) 

fT]Fh + ilv [ F v ]  = O, 

in which the circumflex on h,, indicates that it is to be evaluated on a different side of 
the shock than the quantities in Fh. Since h,, may be evaluated on either side, and since 
h,, has the same (positive) sign on both sides, so must Fh have the same sign on both 
sides. The pressure cannot jump (in 10c) because the Reynolds number is presumed 
low in Darcy flow and the inertial terms are, therefore, absent. 

The entropy cannot decrease in crossing a shock. Letting q5 denote the specific 
entropy, this condition can be written 

[WZ + fLFv + A n P m  ($0) (1  - 4/4 6 0. (11) 

Since the pressure does not change in crossing shocks 

d h  C,dT a+. = - = - => [541 = C,[ln TI; i = v, I ,  m. ' T  T 

Using this result and the identity & = &/T, the second law ( 1  1)  is combined with 
the energy equation (10 b )  to arrive at  the inequality 

(12) 
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in which quantities with circumflexes lie on the two-phase side. To examine the 
consequences of this statement, first note that 

[lnT]--;;[Tl 1 2 0 

T 

whenever the two-phase region is on the right, and that this inequality changes 
direction whenever the two-phase region is on the left. It is, therefore, concluded that 
only three possibilities are consistent with the second law : 

[TI = 0, (13a) 

[TI + 0, the two-phase region is on the left, and F, 2 0, ( 1 3 b )  

[TI + 0, the two-phase region is on the right, and F, 6 0. (13c) 

4. Two-phase/two-phase 
Consider the simplest case of a strictly two-phase flow (containing no single-phase 

regions) as occurs whenever N = P,/P, and S(m) are not too large and S(0)  is not too 
small. As already mentioned, there must be a shock a t  which det A jumps from nega- 
tive to  positive. But, in passing from a two-phase region into another two-phase 
region, [PI = 0 3 [TI = 0, so that the jump conditions ( I O U ,  b )  reduce to 

[Fll = [Fvl = 0 
or, equivalently, 

[#](4O + RP’(S2 + g2 + 88)) + Rg3[P‘] = 0 

(1 - 8)[P’] = [S](+O + f”) 
(14a) 

(14b) 

where quantities with circumflexes will now represent quantities on the right side of 
the shock. 

The two-phase shock conditions (14a, b )  combine to give a cubic equation for $ 

F(8) = (gO+RP’(X2+S$+$2)) (1-g) -~R83(gO+P’)  = 0. (15) 

The existence of a unique physical solution is demonstrated by examining the behav- 
iourofF(fi). 

F( -00) = -00, F ( O )  = if?+ RP‘S’ 2 0, b )  

The above inequalities on F( 1) and F(0)  are based on the observation that. the veloci- 
ties of vapour and liquid, each measured with respect, to  the shock, 

V ,  = - (40 + P‘) and V ,  = - (40 + RP‘S2) (17) 

must have positive and negative signs, respectively, in order that it be possible for 
det A to have the necessary sign-change in crossing. (The supportive argument is 
based on the following observations: det A is roughly a linear combination of VTv and 
V,, Vv and V ,  have the same sign a t  the origin, Vv and V,  cannot both change sign to 
the left of the shock without a singularity, neither Vv nor T’, can change sign a t  the 
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shock, and V ,  > V,.) The sign changes in (16) show that there are three real roots to 
the cubic equation F (  3) = 0. 

h s, < 0) R2 > I )  0 < & <s.  
Since only & is physically meaningful, it is concluded that: 

(a)  a unique solution exists; 

(b) [S] < 0, so the shock faces forward; 

( c )  [P’] > 0, from (14b); 

( d )  d e t A  = R~’cz , (S+23)[S]+[P’](a2+X2+S~)a ,+Ra,  > 0, 
A 

from(l5). 

The last inequality guarantees that det A has the necessary sign-change in crossing 
the shock. 

The stability of the shock can be assessed from the local features noted above. The 
inequalities (17) on V ,  and V,  are sufficient to establish the one-dimensional stability 
in the sense that the characteristics on the left are overtaking the characteristics on the 
right. In  addition, the inequality on [P‘] is, according to the steady planar analyses of 
Miller (1975) and of Laude 85 Morrison (1979), sufficient to suggest the stability of the 
present flows under two-dimensional perturbations. In  some of the more complex 
flow structures to be discussed in later sections it is not so easy to  determine the 
stability from an a prior; analysis, but an examination of the computed results 
(particularly the sign of [P’]) suggests that the criterion is satisfied. 

Numerical solutions are obtained by a forward-marching shooting method, as 
described in the appendix. The shooting parameters are P‘(0) and 8,. The ordinary 
differential equations (6) are integrated outward to @,5; the jump conditions (14a, b) are 
used to cross the shock; integration of (6) is resumed. The values of the shooting par- 
ameters are adjusted until the far-field boundary conditions are satisfied. 

Typical profiles of S ,  P, and T are shown in figure 1. Upon increasing S(0 ) ,  as in 
figure 2, the saturation profile becomes spike-shaped a t  the leading edge. For large 
enough S(O), say S*(O), the peak of the spike rises to S = 1,  indicating liquid-full 
conditions behind the shock. The algorithm still converges for S(0 )  > S*(O), but the 
answers are unphysical since S > 1 in the region immediately behind the shock. 
Thus, for S(0)  S*(0) we seek to accommodate the excess liquid by making allow- 
ance for a liquid-full zone of finite width, as described in the next section. 

5. Two-phase /subcooled liquid /t wo-phase 
A condensing flow may contain a subcooled-liquid zone which lies imbedded within 

an otherwise two-phase region (figure 3).  Such a situation arises as the continuous 
extension of a strictly two-phase flow under a change of data which favours liquid- 
flooding of the pore space: increase of S(0)  as in figure 2 ,  increase of s ( ~ ) ,  increase of 
AT = To- T,. In  the transition from a strictly two-phase flow to an imbedded-liquid 
flow, the shock-line of the two-phase flow broadens into a liquid-filled zone of finite 
width. 

Within the subcooled zone the structure is simple: 8 = 1, T‘ x 0 from (8) with 
r 1, and P‘ = constant for an incompressible liquid. The last implies uniformity of 
the liquid velocity as in a so-called slug-flow. Aside from these consequences of the 



474 L. A .  Rornero and R. H .  Nilson 

I I I 

\ 
\ 
\ 
\ 
\ P  
\ 

\ 
\ 

0 0.5 1 .o 1.5 2.0 
Similarity variable 8*  - x j t t  

FICTJRE 1. Strictly two-phase flow divided by a saturation jump. 
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FIGURE 2. Family of saturation profiles for different prescriptions of the inflow saturation S(0) .  
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FIGURE 3. Two-phase flow divided by imbedded slug of subcooled liquid. 

conservation equations, there is the thermodynamic requirement that T < Tsat ( P )  
everywhere within the subcooled slug. 

A temperature jump [TI < 0 must occur a t  the left end of the slug 6 = 0,. Recall 
that the fluid temperature T and the saturation temperature Tsat (P) are identical at 
6,-. Now, in crossing the slug, the saturation temperature must decrease (since P' < 0 ) ,  
while the fluid temperature remains nearly uniform (from (8)) 

- 0. dTsat c 0 and - dT 
d8 

Were i t  not for an abrupt temperature drop upon entering the slug (T(O,-) > T(€',+)), 
the saturation temperature would fall below the fluid temperature, indicating super- 
heated rather than subcooled conditions. The thermal shock which prevents this 
situation is physically indicative of a narrow thermal bo~ndary-layer (of thickness 
Pe-I) which lies within the slug a t  its left extremity. 

The second law (13b)  admits the temperature jump at O,, provided that F ,  2 0 a t  
O,,.. Using the definition of F ,  and the condition that P' = constant within the slug, 
it is seen that 

It follows that F,& > 0 at the right end of the slug which, from second-law considera- 
tions (I~c), rules out a temperature jump at  the right. The absence of a right-hand 
temperature jump serves to determine the extent of the liquid slug, as explained in the 
numerical procedure of the appendix. 

PLM 104 16 
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A typical imbedded-slug flow is presented in figure 3. Although a thermal shock 
occurs only at  the left end of the slug, a saturation shock is found to occur at  both ends, 
as in the back-to-back shocks of Fayers' hot-water flood problem. The width of the 
slug depends upon the given data. 

(a)  Upon decreasing S(O), the slug solution properly transforms into the strictly 
two-phase solution of $4. As S(0)  -+ X*(O) from above, the width of the slug and the 
jump in T both approach zero. 

( b )  An increase in S(0) causes increased slug-width but only to a finite extent as 
S(0) --f 1. 

(c) An increase in AT (i.e. T,/T,) causes increased slug-width, because more con- 
densate is then produced in raising the temperature of the solid matrix. 

( d )  An increase in #(a) causes increased slug-width. As X(m) -+ 1, the slug extends 
toward infinity, and the liquid compressibility @ must be taken into account. For a 
fully-wet far field (i.e., #(a) = l), the pressure disturbance penetrates to a relatively 
large depth 6'- (Po@p,/pl)*, (roughly, P - erfc (x(pp ,k /Kt ) f )  in the far field) com- 
pared to the two-phase condensation region which remains confined to a boundary- 
layer ofthickness 6' - (p,/pl).3. 

6. Superheated/two-phase.. . 
Under superheated inflow conditions 

8 0  = 0, To 2 TS&t(P,), 
there is a narrow superheated-vapour zone adjacent to the entrance, followed by a 
two-phase downstream region (perhaps containing an imbedded slug of liquid) like 
that described previously. 

A shock with [T] < 0 must occur in passing from the superheated region into the 
two-phase region. To show this, first note that F h  < 0 a t  6' = 0 and that F h  must then 
remain negative throughout the superheated region. Otherwise, there is a singularity 
in the energy equation (8). Now, with Fh < 0 and P' < 0, 

indicating that the flow becomes more superheated as 0 increases. A temperature 
drop must, therefore, occur in the superheated/two-phase transition. 

The shock into the two-phase region occurs when .Ph = 0. This is demonstrated by 
examining the shockless behaviour of the system for small (but now non-zero) values 
of the thermal conductivity (k) and the capillary pressure P, which respectively 
appear as multipliers of T,, and S,,. 

(a)  In  the shock-like transition region there are sharp gradients in T but not in P. 
Such a situation cannot occur in a two-phase region where the Clausius-Clapeyron 
equation relates T' and P'. Thus, the sharp gradients in T must occur in the single- 
phase region. 

( b )  When (k) and P, are both non-zero, T and T' are both continuous in going from 
the superheated region to the two-phase. Thus, the sharp temperature gradients of 
the single-phase region must flatten out before entering the two-phase region. 
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(c) F ,  must change sign (i.e., become positive) in the single-phase region. Otherwise, 
T' could not flatten out. This assertion is based on the extended form of the energy 
equation (8) which includes thermal conduction 

Pe-IT" = -(Fh)T' ,  0 < Pe-l< 1. 

Once the temperature gradient becomes negative (T' < 0), it grows progressively 
steeper (T" < 0), unless F,  becomes positive ( F ,  = +S). 

(d )  F ,  must not change sign (i.e. remains negative) throughout the single-phase 
region and in crossing the shock into the two-phase region. This condition is a conse- 
quence of the shock relations, as previously noted in 0 3. 

To resolve the apparent contradiction between (c) and (d ) ,  it is concluded that 
Fh = + 6 N 0 a t  the superheated/two-phase transition. This conclusion rigorously 
satisfies the continuous boundary-layer argument (c) and approximately satisfied the 
lower-order shock-layer argument (d )  as S --f 0. The condition that F ,  = 0 serves to 
determine the position of the superheated/two-phase shock, as described in the numer- 
ical procedure of the appendix. 

The typical superheated/two-phase flow of figure 4 is somewhat comparable to 
Morrison's numerical calculation for a condensing steam/water flow in the presence 
of confluent air. The superheated region is always quite small, even for large 
values of To/Tsat(P0). Furthermore, an increase in T o  has very little effect on the 
downstream solution, as apparent in a comparison of figures 1 and 4. The effects of 
superheat are small because C,, is small (compared to  hlv), and hence the flow is 
desuperheated in a region which is narrow (compared to the condensation region). 
I n  taking the limit as C, --f 0, the superheated region shrinks to zero, the tempera- 
ture shock moves to the inlet, and the two-phase equations start off singular. 

When the amount of superheat approaches zero, (i.e. (T(0) - Tsat (P(0) ) )  -+ 0), the 
breadth of the superheated region remains finite. This behaviour is a consequence of 
the energy equation ( 4 b )  which demands that T'(0) = 0 whenever S(0) = 0 (provided 
that C,, + 0). Since 

T' = 0 and P' < O = > -  d T s a t  < o a t  e = 0, 
d6 

it is concluded that for S(0)  = 0 the saturation temperature dives below the fluid 
temperature, resulting in a superheated region at  the inlet. It turns out that this 
tendency toward superheat persists for small (but non-zero) values of S(0)  as described 
in the next section. 

7. Two-phase/superheated/two-phase/ . . . 
For small values of So there is a two-phase region adjacent to  the boundary, fol- 

lowed by a superheated zone, followed by a two-phase downstream region (perhaps 
containing an imbedded slug of liquid). The occurrence of an imbedded superheated 
region can be explained on the basis of mathematical or physical arguments. The 
differential equations demand that, for S(0) + 0, S'(0) - h,P'(O), as also apparent 
in figure 2, indicating that the flow must become dryer as it moves forward into the 
medium. Physically, the inflowing fluid experiences a decreasing pressure (DP/ 
Dt < 0) which, according to the Clausius-Clapeyron equation, must be accompanied 

16-2 
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FIGURE 4. rwo-phase flow with superheated inflow region (otherwise same as figure 1). 

by a decreasing temperature (DTIDt  < 0 ) ,  and this cooling is apparently accomplished 
by evaporation of the liquid (DSlDt - aslax < 0, a t  the boundary where conditions 
are fixed in time). 

Downstream of the two-phase entry, the structure is identical to the previous 
superheated flow. So, the only new feature is the two-phaselsuperheated transition. 
There cannot be a temperature jump in passing forward from the two-phase region 
into the superheated region. Supposing to  the contrary that [TI + 0, the second law 
( 1  3 b )  requires that F ,  2 0. Then, from the continuity equation (9  b )  and the definition 
of F A ,  it is seen that 

in the superheated region, so F,, > 0 at the right end of the region. This is in con- 
tradiction with the logic of the previous section which showed that F ,  < 0 at  the right 
end. Hence, [TI = 0 at  the two-phase/superheated transition. 

A stopping condition is needed to  determine the location of the two-phaselsuper- 
heated transition. Since [TI = 0, the shock conditions require that [F,] = [ F J  = 0. 
Further, since S = 0 and F,  = 0 on the superheated side, it follows that 

F ,  = ($0 + P'RX2) S = 0 =+ &O + P'RS' = 0, (19) 

on the two-phase side. Here we have ruled out the possibility that S = 0, since this 
would require a singularity (det A = 0) in the two-phase region. 

Flows which enter under two-phase conditions rnay have different character, 
depending on the value of X( 0). The two-phase/superheated/two-phase solution of 
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FIGURE 5 .  Family of saturation profiles showing imbedded superheated zone 
for small enough S(0) .  

this $ 7 is valid for small S(0) but fails when S(0) is too large. Conversely, the strictly 
two-phase solution of $4 is valid for large X(0)  but fails when S(0) is too small. To 
demonstrate continuous dependence on data (i.e. on S(0) )  and the nature of the type 
7/type 4 transition, computer runs were made for a succession of S(0) values, starting 
from S(0)  = 0, as illustrated in figure 5 .  Letting 19" be the point a t  which the two- 
phase region ends and the superheated region begins, a necessary condition for the 
superheated region to exist is that F,(B*) < 0. As X(0) increases, F,(B*) increases 
until it approaches 0. At this point, the superheated region has shrunk to  zero length, 
since it ends when F ,  = 0. Above this value of X(0), the method of 0 4 is applicable. 

8. Summary 
Shock-like phenomena are seen to occur in transient condensing flow through 

porous media. A pressure-driven, phase-changing flow will develop steep gradients 
in saturation and temperature, approaching shock-like behaviour when the dis- 
persive effects of capillarity and heat conduction are small. Several different flow 
structures may occur, depending upon the initial ( ie.  far field) and boundary (i.e. 
inflow) data: 

( a )  Two-phaseltwo-phase. Strictly two-phase flows occur when: S(0)  is not too small; 
S(co) is not too large; and AT is not too large. A two-phaseltwo-phase saturation shock 
divides the flow, but thermal shock is absent. 

(6) Two-phaselsubcooled liquidltwo-phase. For large S(0) ,  large #(a), or large A T ,  
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the two-phase/two-phase shock line broadens into a subcooled liquid region of finite 
width. Saturation shock occurs a t  both ends ofthe liquid slug, accompanied by thermal 
shock on the trailing end. 

( c )  Two-phaselsubcooled liquid. As S(o0) + 1 ,  the subcooled region extends to 
infinity and the compressibility of the liquid must be taken into account. 

( d )  Two-phlase/szcperheated/two-phase/. . . . For small S(O), an imbedded superheated 
region appears near the boundary. Saturation shock occurs a t  both ends of the super- 
heated zone accompanied by thermal shock on the leading end. As S(0) -+ 0 ,  the super- 
heated zone extends backward to the entrance and the left-hand shock shrinks to 
zero leaving only a superheated/two-phase/. . .structure. 

( e )  Superheatedltwo-phase/. . . . With S(0) = 0, the inflow may be superheated, 
causing accentuation of the superheated region. However, the width of the super- 
heated zone depends strongly on the specific heat ratio (vapour to solid), not on the 
amount of superheat. As C ,  -+ 0, the superheated zone collapses into the origin, 
leaving a thermal-shock and a singularity (det A = 0 )  a t  the origin. 

In  all cases, the transitions from one flow-structnre into another depend continu- 
ously on the data. There are many possible combinations of inflow and far-field 
structure, for example, two-phase/superheated/two-phase/subcooled/two-phase. 

Further study of the condensing flow problem is reported in another paper (Nilson 
& Romero 1980) where we restrict to a representative case in which the inflow and 
far-field are both prescribed as dry saturated-vapour states. Particular emphasis is 
given to the various length scales which arise in the phase-change flows. The overall 
penetration depth of the flow is a consequence of the gross energy-balance and 
momentum-balance, as embodied in the scaling of the similarity variable (used in the 
present figures), 

o * = -  - + A&, -h ;(IZ) (x) 
in which 

A S  = (PC)OAT/W (hlv)ll and (P@O = ( 1  - 4 PmQm + SASPF;. 

But, there are several boundary-layer zones within the flow field: 

1 .  The imbedded superheated zone (as in figure 6) collapses into a singularity a t  
0 = 0, as C,AT/h,v -+ 0. 

2. The precursor two-phase zone, which lies ahead of the subcooled-liquid zone, 
vanishes as (ASplv/pvo) -+ 00. 

3. The thermal boundary-layer, which lies a t  the trailing edge of the sitbcooled- 
liquid zone, approaches a thermal shock as Pe -+ co. 

4. The increasing saturation region (S' > 0 ) ,  which lies to the left of all shocks, 
collapses into the origin as R = (,.u,/pl) -+ 0. The central shock front moves backward 
into the origin in this singular immobile-liquid limit. 
I n  the companion paper (Nilson & Romero 1980) discussion of these matters is 
illustrated by a family of calculations concerning steam-flow in sandstone. 

A complex flow structure has been encountered, even in a rather elementary single- 
component, one-dimensional problem. It is not, however, suggested that a detailed 
knowledge of the flow structure is always a critical issue in the analysis of engineering 
systems, particularly in the geologic applications where there is only limited knowl- 
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edge concerning the structure of the porous medium. Nevertheless, it is important to 
understand the fine structure which is predicted by the customary and well-established 
mathematical model. It is only through this knowledge that the appropriate engineer- 
ing approximations and computational tools can be formulated and tested. 

This work was supported by the U.S. Department of Energy under Contract 
AT (29-1)-789. The Sandia Laboratories is a U.S. Department of Energy Facility. 

Appendix 
The numerical integration procedure is based upon the well-known shooting method. 

Standard library routines perform the major operations : integration by a fifth-order 
Runga-Kutta method and iterative adjustment of the shooting parameters by a 
simplex minimization procedure. A general outline which includes all of the special 
cases is as follows: 

(1 )  Guess the values of P’(0)  and 8,. 

(2) Integrate the two-phase equations (6) until 4 = 0. 

(3) Shock according to (10) with S = 0 on the right. 

(4) IntegraPe the superheated equations (8) and (9b) until Fh = 0. 

(5) Shock according to (14a, b )  with T = T,,,(P) on the right. Here (14a, b )  replaces 

(6) Integrate the two-phase equations (6) until 8 = 8,. 
(7 )  Shock according to (10) with S = 1 on the right. 

(8) Integrate the subcooled liquid equations (8) and (9 a) until T = Tsat (P).  
(9) Shock according to (14a, b )  with T = TSat(P) on the right. 

(10) Integrate the two-phase equations (6) out to large 8. 
A minimization procedure adjusts the values of the shooting parameters, P’(0) and 
8,, until both of the far-field boundary conditions are satisfied. 

Although it is possible that all of the integration steps might apply to a particular 
flow, there are also a number of subset procedures which generate the simpler flows 
that are described in the individual sections of the paper. 

(10) because Fh = 0 in ( lob) .  

$4.  Two-phase/two-phase (11, (6), (9)-(10) 

Two-phase/subcooled . ( I ) ,  (6)-(8) 
$6. Superheated/two-phase.. . 
$ 7. Two-phase/superheated.. . 

$5. Two-phase/subcooled/two-phase ( l ) ,  (6)-( 10) 

(I), (4)-(7), (81, (91, (10) 
(1)-(7)7 (8), (91, (10) 

The presence of the subcooled slug, (7) and (8), is optional in $5  6 and 7. 
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